Part Number Hot Search : 
AYF35 FN1198 TK61023 24AA64F CXD2540Q TC5022 P5LM1 16253P4
Product Description
Full Text Search
 

To Download IRF7737L2TR1PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 irf7737l2trpbf IRF7737L2TR1PBF hexfet ? is a registered trademark of international rectifier.  description the irf7737l2pbf combines the latest hexfet? power mosfet silicon technology with the advanced directfet? packaging technology to achieve exceptional performance in a package that has the footprint of a dpak (to-252aa) and only 0.7 mm profile. the directfet ? package is compatible with existing layout geometries used in power applications, pcb assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note an-1035 is followed regarding the manufacturing methods and processes. the directfe t ? package allows dual sided cooling to maximize thermal transfer. this hexfet  power mosfet is designed for applications where efficiency and power density are of value. the advanced directfet ? packaging platform coupled with the latest silicon technology allows the irf7737l2pbf to offer substantial system level savings and perfo rmance improvement specifically in motor drive, high frequency dc-dc and other heavy load applications. this mosfet utilizes the latest processing techniques to achieve low on-resistance and low qg per silicon area. additional features of this mosfet are 175c operating junction temperat ure and high repetitive peak current capability. these features combine to make this mosfet a highly efficient, robust and reliable device f or high current applications. applicable directfet ? outline and substrate outline  directfet ? isometric  sb sc m2 m4 l4 l6 l8 v (br)dss 40v r ds(on) typ. 1.5m max. 1.9m i d (silicon limited) 156a q g 89nc ? advanced process technology ? optimized for industrial motor drive, dc-dc and other heavy load applications ? exceptionally small footprint and low profile ? high power density ? low parasitic parameters ? dual sided cooling ? repetitive avalanche capability for robustness and reliability ? lead free, rohs compliant and halogen free absolute maximum ratings stresses beyond those listed under ?absolute maximum ratings? may cause permanent damage to the device. these are stress rating s only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. exposure to absolute- maximum-rated conditions for extended periods may affect device reliability. the thermal resistance and power dissipation ratin gs are measured under board mounted and still air conditions. ambient temperature (t a ) is 25c, unless otherwise specified. parameter units v ds drain-to-source voltage v gs gate-to-source voltage i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) i d @ t a = 25c continuous drain current, v gs @ 10v (silicon limited)  i d @ t c = 25c continuous drain current, v gs @ 10v (package limited) i dm pulsed drain current p d @t c = 25c power dissipation  p d @t a = 25c power dissipation  e as single pulse avalanche energy (thermally limited)  e as (tested) single pulse avalanche energy tested value  i ar avalanche current  a e ar repetitive avalanche energy mj t p peak soldering temperature t j operating junction and t stg storage temperature range thermal resistance parameter typ. max. units r  ??? 45 r  12.5 ??? r  20 ??? r  ??? 1.8 r 0.  w/c v a mj c/w w c 20 315 0.56 31 83 3.3 270 -55 to + 175 max. 156 110 624 386 104 see fig.18a, 18b, 16, 17 40 directfet   power mosfet  d d g s ss sss pd - 96414
2 www.irf.com  
    surface mounted on 1 in. square cu (still air).   
  with small clip heatsink (still air)   mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) notes   through  are on page 10 d s g static characteristics @ t j = 25c (unless otherwise stated) parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 40 ??? ??? v / . 0.0 / 1. 1. .0 .0 .0 v gs(th) / t j gate threshold voltage coefficient ??? -10 ??? mv/c gfs forward transconductance 100 ??? ??? s r g gate resistance ??? 0.6 ??? 0 100 100 dynamic characteristics @ t j = 25c (unless otherwise stated) parameter min. typ. max. units q g total gate charge ??? 89 134 q gs1 pre-vth gate-to-source charge ??? 18 ??? q gs2 post-vth gate-to-source charge ??? 8 ??? see fig.11 q gd gate-to-drain ("miller") charge ??? 34 ??? q godr gate charge overdrive ??? 29 ??? q sw switch charge (q gs2 + q gd ) ??? 42 ??? q oss output charge ??? 39 ??? nc t d(on) turn-on delay time ??? 12 ??? t r rise time ??? 19 ??? t d(off) turn-off delay time ??? 22 ??? t f fall time ??? 14 ??? c iss input capacitance ??? 5469 ??? c oss output capacitance ??? 1193 ??? c rss reverse transfer capacitance ??? 534 ??? c oss output capacitance ??? 4296 ??? c oss output capacitance ??? 1066 ??? c oss eff. effective output capacitance ??? 1615 ??? diode characteristics @ t j = 25c (unless otherwise stated) parameter min. typ. max. units i s continuous source current (body diode) a i sm pulsed source current (body diode)  v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 35 53 ns q rr reverse recovery charge ??? 32 48 nc i f = 94a, v dd = 20v di/dt = 100a/ s  i s = 94a, v gs = 0v  i d = 94a v ds = 16v, v gs = 0v v dd = 20v, v gs = 10v  i d = 94a r g = 1.8 ? = 1.0mhz v gs = 0v, v ds = 0v to 32v conditions na conditions v gs = 0v, i d = 250 a reference to 25c, i d = 1ma v gs = 10v, i d = 94a  v ds = 40v, v gs = 0v, t j = 125c v gs = -20v p-n junction diode. mosfet symbol conditions v gs = 0v v ds = 25v showing the integral reverse v gs = 0v, v ds = 1.0v, f=1.0mhz v gs = 0v, v ds = 32v, f=1.0mhz ??? ??? 156 624 pf v ds = v gs , i d = 150 a ??? ??? a nc ns v ds = 10v, i d = 94a v ds = 20v, v gs = 10v v gs = 20v v ds = 40v, v gs = 0v
www.irf.com 3  
  fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical on-resistance vs. gate voltage fig 4. typical on-resistance vs. drain current fig 6. normalized on-resistance vs. temperature fig 5. typical transfer characteristics 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 60 s pulse width tj = 25c 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60 s pulse width tj = 175c 4.5v vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 4 6 8 10 12 14 16 18 20 v gs, gate -to -source voltage (v) 0 1 2 3 4 5 6 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) i d = 94a t j = 25c t j = 125c 3 4 5 6 7 8 v gs , gate-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = -40c tj = 25c tj = 175c v ds = 25v 60 s pulse width 5 30 55 80 105 130 155 180 205 i d , drain current (a) 1.0 1.3 1.6 1.9 2.2 2.5 2.8 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) t j = 25c t j = 125c vgs = 10v -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 94a v gs = 10v
4 www.irf.com  
  fig 7. typical threshold voltage vs. junction temperature fig 8. typical source-drain diode forward voltage fig 9. typical forward transconductance vs. drain current fig 10. typical capacitance vs.drain-to-source voltage fig.11 typical gate charge vs.gate-to-source voltage fig 12. maximum drain current vs. case temperature -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.5 2.5 3.5 4.5 5.5 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 1.0a id = 1.0ma id = 250 a id = 150 a 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 20 40 60 80 100 120 140 160 i d ,drain-to-source current (a) 0 50 100 150 200 250 300 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 10v 380 s pulse width 0 25 50 75 100 125 q g , total gate charge (nc) 0 2 4 6 8 10 12 14 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 32v v ds = 20v vds= 8v i d = 94a 25 50 75 100 125 150 175 t c , case temperature (c) 0 20 40 60 80 100 120 140 160 i d , d r a i n c u r r e n t ( a ) 0.2 0.4 0.6 0.8 1.0 1.2 v sd , source-to-drain voltage (v) 1.0 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = -40c tj = 25c tj = 175c v gs = 0v
www.irf.com 5  
  fig 14. maximum avalanche energy vs. temperature fig 13. maximum safe operating area fig 15. maximum effective transient thermal impedance, junction-to-case fig 16. typical avalanche current vs.pulsewidth 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 ci i / ri ci= i / ri c 4 4 r 4 r 4 ri (c/w) i (sec) 0.00501 18.81575 0.93035 0.022853 0.17759 0.000126 0.68769 0.00313 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. 0.01 allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 150c and tstart =25c (single pulse) 0.10 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) operation in this area limited by rds(on) tc = 25c tj = 175c single pulse 100 sec 1msec 10msec dc 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 300 350 400 450 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 13a 24a bottom 94a
6 www.irf.com  
  fig 17. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 16, 17: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 18a, 18b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 16, 17). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 15) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av fig 18b. unclamped inductive waveforms fig 18a. unclamped inductive test circuit t p v (br)dss i as fig 19a. gate charge test circuit fig 19b. gate charge waveform v ds 90% 10% v gs t d(on) t r t d(off) t f fig 20a. switching time test circuit fig 20b. switching time waveforms vds vgs id vgs(th) qgs1 qgs2 qgd qgodr r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs 1k vcc dut 0 l s 20k   
 1      0.1 %      


 + -   25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 20 40 60 80 100 120 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 94a
www.irf.com 7  
  
?        please see an-1035 for directfet ? assembly details and stencil and substrate design recommendations g = gate d = drain s = source g d d dd d d s ss s s s
8 www.irf.com  
  note: for the most current drawing please refer to ir website at http://www .irf.com/package/ code a b c d e f g h j k l m r p 0.017 0.029 0.003 0.007 0.057 0.104 0.236 0.048 0.026 0.024 max 0.360 0.280 0.38 0.68 0.02 0.09 1.35 2.55 5.90 1.18 0.55 0.58 min 9.05 6.85 0.42 0.74 0.08 0.17 1.45 2.65 6.00 1.22 0.65 0.62 max 9.15 7.10 0.015 0.027 0.003 0.001 0.100 0.053 0.232 0.046 0.023 0.022 min 0.270 0.356 metric imperial dimensions 0.98 1.02 0.73 0.77 0.040 0.039 0.030 0.029 l1 0.159 3.95 4.05 0.155 l2 0.214 5.35 5.45 0.210 gate marking part number logo batch number date code line above the last character of the date code indicates "lead-free" directfet  part marking 
         please see an-1035 for directfet assembly details and stencil and substrate design recommendations
www.irf.com 9  
  directfet ? tape & reel dimension (showing component orientation). reel dimensions note: controlling dimensions in mm std reel quantity is 4000 parts. (ordered as irf7737l2tr). for 1000 parts on 7" reel, order irf7737l2tr1 max n.c n.c 0.520 n.c 3.940 0.880 0.720 0.760 imperial min 330.00 20.20 12.80 1.50 99.00 n.c 16.40 15.90 standard option (qty 4000) code a b c d e f g h max n.c n.c 13.20 n.c 100.00 22.40 18.40 19.40 min 12.992 0.795 0.504 0.059 3.900 n.c 0.650 0.630 metric min 7.000 0.795 0.331 0.059 2.460 n.c n.c 0.630 tr1 option (qty 1000) max n.c n.c 13.50 2.50 n.c n.c n.c n.c min 177.80 20.20 12.98 1.50 62.48 n.c n.c 16.00 metric max n.c n.c 0.50 n.c n.c 0.53 n.c n.c imperial loaded tape feed direction note: controlling dimensions in mm code a b c d e f g h imperial min 4.69 0.154 0.623 0.291 0.283 0.390 0.059 0.059 max 12.10 4.10 16.30 7.60 7.40 10.10 n.c 1.60 min 11.90 3.90 15.90 7.40 7.20 9.90 1.50 1.50 metric dimensions max 0.476 0.161 0.642 0.299 0.291 0.398 n.c 0.063 note: for the most current drawing please refer to ir website at http://www.irf.com/package/
10 www.irf.com  
  ir world headquarters: 101 n. sepulveda blvd. , el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 10/2011 data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on ir?s web site.  click on this section to link to the appropriate technical paper.  click on this section to link to the directfet ? website.  surface mounted on 1 in. square cu board, steady state.  t c measured with thermocouple mounted to top (drain) of part.  repetitive rating; pulse width limited by max. junction temperature.   starting t j = 25c, l = 0.024mh, r g = 50 , i as = 94a. pulse width 400 s; duty cycle 2%.
used double sided cooling, mounting pad with large heatsink.  mounted on minimum footprint full size board with metalized back and with small clip heatsink. r is measured at t j of approximately 90c. note form quantity irf7737l2trpbf directfet2 large can tape and reel 4000 "tr" suffix IRF7737L2TR1PBF directfet2 large can tape and reel 1000 "tr1" suffix part number package type standard pack   qualification standards can be found at international rectifier?s web site http://www.irf.com/product-info/reliability   higher qualification ratings may be available should the user have such requirements. please contact your international rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/   applicable version of jedec standard at the time of product release. msl1 (per jedec j-std-020d ??? ) rohs compliant qualification information ? qualification level industrial ?? (per jedec jesd47f ??? guidelines) yes moisture sensitivity level dfet2 comments: this family of products has passed jedec?s industrial qualification. ir?s consumer qualification level is granted by extension of the higher industrial level.


▲Up To Search▲   

 
Price & Availability of IRF7737L2TR1PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X